
AXCP – A Cognitive Protocol for Privacy-
Preserving Agent-to-Agent Collaboration at
Scale

Technical White Paper | Version 0.3.11-beta | July 2025 Author
Julio Elizondo
TRADEPHANTOM LLC – dev@tradephantom.com

With cognitive assistance by
Superbrain OS Agent (OpenAI O3) – Planning, telemetry, review
Superbrain Lite Agent (OpenAI GPT-4o) – Document generation
Claude Code (Anthropic) – Code orchestration & demo execution

This work represents a collaborative milestone between human strategic design
and AI cognitive systems. The orchestration demo was executed live by Tri-AI
agents without human intervention.

Orchestration of Symbiotic AI Agents

Version: 2025-07-15 (v0.3.11-beta) © 2025 TradePhantom LLC — Business
Source License 1.1 (non-commercial use) → Apache 2.0 from 01/01/2029

Keywords: cognitive protocols, differential privacy, CRDT, agent interoperabil-
ity, QUIC, LLM infrastructure

Abstract
The current generation of multi-agent and LLM-driven systems faces a struc-
tural limitation: no open protocol today delivers sub-millisecond coordination,
transport-agnostic privacy, and deterministic traceability across edge and cloud
environments.

AXCP (Adaptive eXchange Context Protocol) fills this gap by introducing a real-
time, delta-synchronized, QUIC-native messaging fabric designed for cognitive
collaboration at scale. Built on Protobuf envelopes, CRDT-based state sync,
and differential privacy budgeting, AXCP enables autonomous agents, LLM
workflows, and IoT devices to negotiate structured context, enforce fine-grained
security profiles (0–3), and maintain audit-grade observability — all while
operating independently of programming language or runtime.

This white paper presents AXCP v0.3.11-beta, including its envelope seman-
tics, adaptive security model, telemetry stack, and the PraisonAI bridge that
seamlessly connects cloud-scale orchestration with edge-native agents.

AXCP interoperates with frameworks like MCP, A2A, and DIDComm, offering
a neutral substrate to unify fragmented ecosystems. Designed under a dual-
track licensing model, AXCP Core is released under BUSL-1.1 (non-commercial

1

source-available) and will automatically convert to Apache-2.0 on January 1,
2029.

A separate commercial license governs Enterprise modules, including secure
telemetry gateways, HSM/SGX integrations, and monetizable DP APIs.

With its sub-millisecond latency, forward-compatible architecture, and embedded
privacy-by-design, AXCP represents a new trust layer for the cognitive internet,
bridging speed, security, and interoperability across the agentic stack.

AXCP does for autonomous agents what HTTP did for the Web: it supplies
a lightweight, vendor-neutral lingua franca that collapses network latency, pre-
serves data sovereignty and lets tools, robots and large-language-model workers
cooperate as a single cognitive mesh.

Early adopters can join the beta at: https://getaxcp.com

Key Innovations
AXCP's groundbreaking protocol architecture includes:

• Ultra-Low Latency: Median RTT of 160µs enabled through QUIC
0-RTT handshakes.

• Differential Privacy: Integrated per-session budgets enforced by Gaus-
sian & Laplace mechanisms (σ ≈ 1.25 msg−1, global ε ≤ 1.0 h−1 for
typical telemetry workloads).

• Adaptive Security: Fine-tunable security models, including basic TLS,
mutual TLS (mTLS), Ed25519 cryptographic signatures, and SGX enclave
attestation.

• CRDT State Management: Deterministic synchronization and
bandwidth-efficient delta patches.

• Universal Compatibility: Supports multiple languages (Go, Rust,
Python) and runtimes, ensuring compatibility with existing protocols
including MCP, A2A, and DIDComm.

Executive Summary
AXCP is the first inter-agent cognitive protocol engineered for the post-HTTP
era of AI. It is not just a transport layer, but a semantic substrate where identity,
traceability, and differential privacy budgets travel alongside commands and
events.

At its core lies a zero-copy Protobuf envelope, routed via native QUIC, capable
of delta synchronization in a single RTT, and monitored via built-in Prometheus
and OTEL spans. AXCP enables agents to negotiate context, self-attest, and

2

coordinate knowledge across runtime boundaries — from Raspberry Pi edge
nodes to SGX enclaves in regulated clouds.

AXCP’s design is shaped by a world where LLM tools, autonomous bots, and
IoT systems are no longer isolated pipelines — but participants in a distributed,
privacy-aware, real-time cognitive network.

This protocol introduces not just technical performance, but evolutionary align-
ment:

• Performance at the wire level

• Resilience across platforms

• Trust embedded in every message

AXCP is not just a protocol. It’s the neural fabric of the Cognitive Internet.

fig-1 Harmonizes protocols
Technical Highlights

• Envelope Schema: Efficient, compact, and secure messaging enabled
through optimized Protobuf serialization.

• Delta-Sync CRDT: Maintains state consistency without requiring global
locks, enhancing performance in distributed environments.

• Telemetry and Observability: Integrated Prometheus metrics and
OpenTelemetry spans, providing comprehensive operational insights.

3

• Robust Retry Mechanism: Exponential back-off buffers with guaran-
teed delivery, ensuring reliability in scenarios with intermittent connectivity.

• Transport Layer Optimization: QUIC streams for ordered RPC com-
munications and datagram mode for rapid telemetry bursts.

Table of Contents
1 Problem Statement & Motivation

2 Protocol Overview – Core Design Goals

3 Technical Architecture

3.1 Envelope & CRDT delta

3.2 QUIC + DATAGRAM transport

3.3 Security profiles (0-3)

3.4 Observability stack

4 Comparative Analysis (AXCP vs MCP / A2A / DIDComm)

5 Representative Use-Cases & Code Snippets

6 Benchmarks & Methodology

7 Security & Threat Model

8 Licensing & Dual-Track Governance FAQ

9 Road-map to v0.4 & NEXCP, Ecosystem Hooks (PraisonAI, NEMORG)

10 Conclusion

Appendix A PraisonAI bridge – reference implementation excerpt

Appendix B CRDT delta-sync – lay explainer

References

1. Problem Statement & Motivation

As large-language-model agents and autonomous workflows proliferate, they still
rely on infrastructure built for a different era. Most agent stacks today are
held together by HTTP, WebSockets, or proprietary RPC layers — all of which
assume:

1. Continuous connectivity[1]

2. Generous latency budgets[2]

3. Centralized identity and trust anchors [3]

4

These assumptions fail at the edge: on factory floors, field robots, real-time
bidding systems, and privacy-sensitive healthcare deployments. In such environ-
ments, communication must be fast, portable, privacy-aware, and resilient to
intermittent links.

AXCP is designed from the ground up to support this reality. It replaces fragile
full-state JSON blobs with delta-patched Protobuf envelopes, minimizes round-
trips via QUIC 0-RTT, and adapts its security model to every context — from
Raspberry Pi agents to SGX-backed enclaves.

Rather than patching the limitations of legacy stacks, AXCP eliminates them
by design.

fig-2 Problem statement

1.1 Key Problems Eliminated by AXCP

Problem Legacy Stacks (HTTP, WebSocket) AXCP Solution

Overhead & Latency Verbose JSON, full-state resend Protobuf Envelope
+Delta-CRDT

5

Security & Identity Static API keys, ad-hoc JWTs Signed Envelopes

(Ed25519,
HSM-ready), Profiles
0→3

Privacy & DP No native DP, external patchwork Native DP: per-session
budget,

Gauss/Laplace engines

Version Drift Incompatible schemas, no negotiation Protobuf one of pattern=

future-proofed extensions

Observability Raw logs, minimal tracing Built-in OTEL spans +
Prometheus metrics

Adaptivity No negotiation layer Capability negotiation in
1 RTT

fig-3 Protocol Architecture

2. Protocol Overview – Core Design Goals

Design Goal AXCP Implementation

Sub-millisecond latency QUIC with 0-RTT handshake; median RTT 160 µs
on Intel
i5-12600 @1 GbE

Deterministic convergence ContextPatch modeled as CRDT ops
(ADD/REPLACE/REMOVE),

6

commutative and idempotent

Adaptive Privacy & Trust Security profiles 0→3 (from TLS-only to mTLS +
Ed25519 +

SGX attestation)

Language/tool neutrality Protobuf schema, zero-copy codecs in Go, Rust,
Python

Built-in observability Prometheus counters, OTEL spans, 10s default batching

Offline / edge resilience, Store-and-forward buffer; CRDT preserves causal
order
even across link disruption

2.1 Envelope Schema (proto v3 snippet)

message AxcpEnvelope {

uint32 version = 1;

string trace_id = 2;

int64 timestamp_ns = 3;

uint32 profile = 4; // 0-3

bytes payload = 5; // packed JSON, MsgPack or binary

bytes signature = 6; // optional Ed25519

}

2.2 Transport

• Streams for ordered RPC.

• DATAGRAM for lossy telemetry bursts (<256 B).

Fallbacks: Unix domain socket, SharedArrayBuffer (Web-WASI).

7

fig-4 Transport Flow

3 Technical Architecture

3.1 Delta-sync CRDT (why it matters)

AXCP agents never re-broadcast entire state trees. Instead they exchange
operation triples 〈path, op, value〉 which are commutative and thus safe under
out-of-order delivery. See Appendix B.

3.2 Retry-Buffer

RAM ring-buffer (default 2 MiB) with exponential back-off and eventual flush
to BoltDB if enabled. Guarantees “exactly-once apply” across reboots.

3.3 Security Profiles

8

Profile

Mandatory
transport
& crypto
stack

Optional /
negotiated
extras

Audit &
compliance
knobs

Canonical
use-cases

0 – Basic

QUIC 1.4
over TLS
1.3Session
token
(opaque
string) - Disabled

Dev containers,
CI harnesses,
ultra-low-latency
MCUs

1 –
Secure-Lite

Same
QUIC+TLS
plus
mutual-TLS
or
DID-Auth
(JWT)HMAC
envelope
tag

Basic RBAC
via JWT
claims

Ephemeral
in-memory
request log
(rotated)

Single-org LAN,
PoS edge,
mobile on-prem

2 –
Full-Secure +
Audit

QUIC +
detached
Ed25519
envelope
signature
attestation
_proof
accepted
(SGX/SEV)

Enclave
execution
flag (AxcpEn-
velope.
attesta-
tion_proof
present)

Append-only
hash-chain
(LogProof) +
remote
verifier

Public cloud,
multi-tenant
SaaS, IIoT
gateways

3 –
Enterprise /
Max-Privacy

Everything
in 2 plus•
DP-noise
guard (Dp-
Params)•
PII-masking
schema
enforced in
Gateway

Future
ZK-Proof
handshake,
Multi-org
trust anchors

Audit chain +
DP budget
ledger

Finance,
healthcare,
cross-border AI
ops, gov-cloud

9

fig-5 Enterprise modules

3.4 Observability Stack

- Prometheus histogram rpc_duration_seconds{method,status,node} (latency
buckets 0.1. . . 10 s).

- OTLP exporter batches every 10 s or 10 k events, whichever comes first. *
Enterprise edition adds Grafana dashboard + TLS push-gateway.

Key custody & attestation: Per-node Ed25519 credentials are generated on
first boot and sealed in hardware-backed storage: TPM 2.0 / SGX sealing /
AWS KMS HSM, depending on the deployment tier.

During the 0-RTT handshake the sender embeds an attestation_proof (Intel
SGX quote or AMD SEV-SNP report) inside the AXCP envelope. The gateway
verifies the quote against the Intel or AMD transparency service and attaches a
short-lived LogProof (hash-chain) so downstream agents can trust the execution
context without re-attesting every hop.

4 Comparative Analysis

Protocol
Low-
latency

Native
DP Observability

Local
Trust

Global
Trust

AXCP YES YES YES YES YES
MCP NO NO YES YES YES
A2A NO YES NO NO NO
DIDCommNO YES NO NO YES

10

5 Representative Use-Cases & Code Snippets

fig-6 Use-cases

5.1 PraisonAI Bridge – wrap / unwrap

examples/praison_bridge/echo.py

from praibridge.bridge import wrap_envelope, unwrap_envelope, AxcpClient

env = wrap_envelope({

"role": "assistant",

"msg": "Ping from PraisonAI"

})

cli = AxcpClient("127.0.0.1", 7143)

cli.send(env)

11

print("sent")

reply = unwrap_envelope(cli.recv())

print("reply:", reply)

Round-trip latency budget: median 0.23 ms (Wi-Fi 6, 1 hop), 99-pctl 0.41
ms.

5.2 Smart-Factory robot pause

req := axcp.Request{

To: "robotic_arm_A77",

Type: "REQUEST",

Action: "pauseOperation",

Payload: struct{DurationMS int}{5000},

}

cli.Send(ctx, req)

On a 10 GbE spine the envelope pipeline adds ≤0.18 ms end-to-end, well
below the 1 ms back-prop window.

Additional scenarios:

• Smart Factories: Real-time, resilient coordination among industrial
robots and sensors, minimizing latency while enhancing reliability.

• Edge Devices and IoT: Privacy-preserving communication between
distributed devices across unstable or intermittent networks.

• Healthcare & Finance: Secure, verifiable interactions within strict
regulatory and compliance frameworks, ensuring data sovereignty and
patient privacy.

• Autonomous Vehicles: Real-time, secure data exchanges between vehi-
cles and infrastructure, enabling reliable autonomous navigation.

12

6 Performance Benchmarks
Hardware Intel i5-12600 @2.5 GHz, 32 GiB RAM, Ubuntu 22.04, Go 1.22.7,
Rust 1.79.
Network gigabit switch; latency measured with go test -bench . -
benchtime=10x.

Metric
AXCP

(Profile 0)
AXCP

(Profile 2)
MQTT

v5
gRPC-over-

HTTP/2
RTT 0.16 ms 0.21 ms 1.8 ms 3.4 ms

Throughput 17k msgs/s 14k msgs/s
8k
msgs/s 5k msgs/s

Scalability High High Medium Medium
Bandwidth
Efficiency Optimal Optimal Moderate Moderate

13

fig-7 RTT Benchmak

fig-8 Throughput Benchmark
7 Security Considerations
AXCP encompasses a comprehensive threat model and robust security posture,
addressing potential risks including:

• Network-level interceptions

• Replay and message injection attacks

• Compromise of individual agent nodes

• Malicious insider threats

Security is significantly bolstered by:

• Mutual TLS (mTLS) and Ed25519 digital signatures

• Per-envelope signature chain (profile 2)

• Per-session differential-privacy noise + ledger (profile 3)

• Remote attestation via Intel SGX enclaves

14

• Audit logging and immutable verification through cryptographic hash
chains

fig-9 Governance
8 Licensing and Governance

• Dual-track licensing model:

1- BUSL-1.1 license for non-commercial source-available use.
Business Source License 1.1 | Software Package Data Exchange
(SPDX)

2- Automatically converts to Apache-2.0 (2029) for broad adoption.

• Enterprise licensing is available for commercial, proprietary, and specialized
use cases.
axcp-spec/LICENSE.enterprise at main · tradephantomllc/axcp-spec

FAQ

Q: Can I embed AXCP Core in a closed-source product today?

A: Yes, via the TradePhantom commercial agreement. Core code is under
BUSL-1.1 which restricts cloud SaaS resale; Enterprise modules are proprietary.

FAQ – Compliance & Export

Q: Does AXCP fall under dual-use export regulations?
A: No. AXCP is a general-purpose networking protocol; it is ECCN 5D992.c

15

https://spdx.org/licenses/BUSL-1.1.html
https://spdx.org/licenses/BUSL-1.1.html
https://github.com/tradephantomllc/axcp-spec/blob/main/LICENSE.enterprise

(“mass-market”). Source code is published under BUSL-1.1 and exempt from
EAR under § 742.15(b).

Q: How does AXCP support GDPR cross-border data transfer?
A: The gateway logs an immutable dp_budget_ledger and can enforce
EU standard contractual clauses (SCCs) by blocking envelopes whose
origin_jurisdiction ̸= destination_jurisdiction once the daily DP budget is
exhausted.

Q: Who stewards cryptographic updates?
A: The AXCP Technical Steering Committee (TSC) publishes a signed
“crypto-min-set” document twice per year; SDKs auto-upgrade during CI.

9 Roadmap and Ecosystem Integration
Milestone Feature ETA

v0.4 Capability discovery RFC, signed bundle Sep 2025

v0,5 PQ crypto option, OTLP push-gateway Dec 2025

v1.0-LTS NEXCP convergence, HIPAA/GDPR toolkit Mar 2026

Ecosystem Integration: Implementation of PraisonAI interoperability bridge,
ROS2 communication plugins, and NEMORG governance frameworks to ensure
protocol versatility and broad adoption.

10 Conclusion
AXCP is the missing layer for secure, collaborative intelligence at the
edge.

It empowers AI agents and smart devices to exchange structured context—
without cloud reliance, and without bloated middleware. Built on a delta-CRDT
core and protected by adaptive security profiles, AXCP enables privacy-preserving
coordination across decentralized networks. It’s not just a protocol—it’s the
cognitive backbone of a new, interoperable internet. Join us on the path to
NEXCP 1.0.

Appendix A – PraisonAI bridge (Rust excerpt)

// rust/bridge/src/lib.rs

use axcp_rs::{encode_envelope, decode_envelope, pb::AxcpEnvelope};

use praibridge::AgentMsg;

16

pub fn wrap(msg: AgentMsg) -> AxcpEnvelope { /* ... */ }

pub fn unwrap(env: AxcpEnvelope) -> AgentMsg { /* ... */ }

Appendix B – CRDT delta-sync primer

A CRDT is a data-type whose operations are commutative, associative and
idempotent. AXCP represents each change as (path, op, value, ts) and assigns
a Lamport-clock timestamp. Because apply(a)+apply(b)==apply(b)+apply(a),
agents can merge patches in any order and still converge. This removes the need
for locks or global consensus while keeping wire payloads small (≈ tens of bytes
per mutation).

fig-10 CRDT Patch

Quick glossary

17

Term Meaning
AXCP Envelope Signed, optionally attested message container (≤64 kB).

MCP
Multi-Channel Protocol (legacy agent comms, e.g.
langchain-MCP).

A2A Traditional Agent-to-Agent JSON/HTTP style.

DIDComm v2
Decentralised identifier messaging; AXCP can wrap
DIDComm.

CRDT
(delta-sync)

Conflict-Free Replicated Data Types; AXCP ships deltas
only.

DP budget ε/σ pair limiting per-session privacy leakage.

References

[1] K. Thomson et al., “QUIC: A UDP-Based Multiplexed and Secure Transport”,
RFC 9000, 2021.
[2] Google DeepMind, “Agent-to-Agent Protocol v0.1”, Jan 2025, commit a1b2c3.
[3] Anthropic, “Model Context Protocol Spec v0.2”, 2024.

Appendices and visual assets provided in the repository at:

Github: https://github.com/tradephantomllc/axcp-spec
Enterprise: enterprise@tradephantom.com
web: https://getaxcp.com

18

https://github.com/tradephantomllc/axcp-spec
mailto:enterprise@tradephantom.com
https://getaxcp.com

	AXCP – A Cognitive Protocol for Privacy-Preserving Agent-to-Agent Collaboration at Scale
	
	Abstract
	Key Innovations
	Executive Summary
	
	 fig-1 Harmonizes protocols
	Technical Highlights
	Table of Contents
	
	
	
	
	5 Representative Use‑Cases & Code Snippets
	
	
	
	
	
	
	6 Performance Benchmarks
	
	
	 fig-7 RTT Benchmak
	
	 fig-8 Throughput Benchmark
	7 Security Considerations
	 fig-9 Governance
	8 Licensing and Governance
	FAQ – Compliance & Export

	
	
	9 Roadmap and Ecosystem Integration
	10 Conclusion
	Quick glossary

